
Building the ZoomFloppy

Nate Lawson

nate@root.org

Presented at ECCC

September 18, 2010

Overview

• Commodore floppy drive architecture

– How the drive works

– Copy protection schemes

• The old way to interface a 1541 and PC (printer port)

• USB interfacing: the new way

– xu1541 (2007)

– xum1541 (2009)

• Creating the xum1541 firmware

• Building the ZoomFloppy

Commodore floppy drive architecture

• The first dual CPU home computer was not the C128
(apologies to Bil Herd)

• 2040 dual drive

– 6502 to talk to the host

– 6504 to do access the media (GCR encoding)

• IEEE-488 (GPIB) interface to PET

Commodore floppy drive architecture

• 1541 series (1540, 1541-II, etc.)

– Cost reduction is a kind of performance

– IEC bus is cheaper serial version of IEEE-488

– Merged both CPU functions into one with interrupt-driven
task queue

• 1571 series

– Multiple floppy formats (MFM)

– Burst mode using SRQ line

Copy protection schemes

• Best ones depend on the hardware limits of drive

• 1541 limits

– 2 KB of RAM, 8 KB ROM

– No index hole sensor (soft-sectored)

• Whole-track custom format (RAM too small)

– v-max: fully custom encoding, 10-bit sync marks

– Epyx (newer)

• Track sync (no IHS)

– Bump head between tracks and verify data found at
proper location

– Fat tracks (Activision, EA, RapidLok)

Copying protected floppies

• As opposed to cracking protection schemes

• Hardware mods
– Maverick 8 KB drive RAM expansion

– Store entire track at once in drive, stream back to host

– Detectable by checking mirrored addresses

– Burst Nibbler parallel cable
– Attaches to unused 8-bit port on VIA

– Sends one byte at a time, sufficient for full media bitrate

– Add an index hole sensor
– 1571 has one built-in for MFM mode

– Or clever in-drive timer routines

• nibtools/mnib have support reading and writing
protected disks
– Thanks to Peter Rittwage and Markus Brenner

1541 hardware mods

Parallel port

IHS

Interfacing with a PC (old way)

• Printer port (LPT)

– 8 bits bidirectional plus handshake signals

– Perfect for IEC bus control + parallel transfer

• Problems

– XA1541, XM, XE, X, P-variants, too many!

– Caused by evolving and differing voltages on PC ports

– Opposing goals of low cost vs. functionality

– Doesn’t exist on modern PCs and laptops

– Also Mac hardware

– Anything non-x86

– Fast and low-latency, but too slow for some tricks

– 1 µs per access (1 MB/sec max)

xu1541

• USB floppy interface by Till Harbaum
– Cheap

– All through-hole parts so easy to build

– Open-source and works well

• Limitations
– Slow

– Software USB decoding

– Serial slower than with an X-cable, parallel transfers as slow
as serial

– Can’t support parallel nibbling and limited RAM so no copying
protected floppies

– USB control transfers only

– Not readily available

• Good for its time, especially if you just want to
transfer files to unprotected disks

Enter: me

• In 2005, got an XAP1541 and began archiving
floppies for C64Preservation.com

– “Just how did some of those more complicated copy
protection schemes work anyway?”

– Reverse-engineered from original image using VICE drive
monitor

• Contributed some fixes to nibtools

• Then PC with DOS and printer port died

xum1541

• 2008: “Hey, there’s this new Atmel microcontroller
with hardware USB support”

– Ported xu1541 firmware to the AT90USB, replacing the
software USB stack with hardware routines

– OpenCBM plugin interface so standard tools all work

– LUFA library by Dean Camera was very helpful

– AT90USBKEY devel board: $30

– Built a custom cable to connect to existing XAP1541

– No PCB design or difficult soldering, just a cable

xum1541

• More debugging and announced Jan. 2009

• Problems

– Works fine but have to replug if USB transfer interrupted
(^C)

– No nibbler support, control messages too small for USB
overhead (8 bytes each)

– Only two people built cable (Womo and Christian V.)

xum1541

• New USB protocol
– USB bulk transfers (32 or 64 bytes)

– Inline byte handling (no bucket brigade in RAM)

– Start/end markers to detect interruptions and reset
cleanly

• Finished on train in Europe (fall 2009)
– Fast d64copy

– nibtools works!

• Problems
– Infinite listener hold-off

– To support printers or other slow devices, you have to wait
forever for drive to respond

– 3.3v level mismatch gave some idle current but still safe

– Still only two users

Building the ZoomFloppy

• Daughtercard approach

– New Bumble-B board: $15

– Would have plugged into this IEC/parallel adapter

– 7406 for bus isolation

• Assembled several prototypes and works well

– “Anyone want to build this thing?”

– Jim Brain: “ok”

Building the ZoomFloppy

• Fully custom PCB by Jim Brain

– Connectors for IEC, parallel (multiple)

– Connectors for future IEEE-488 support

– Fits in a nice enclosure

– Packaged and for sale (hopefully, soon)

IEEE-488 future support

• Implemented in the XS-1541 currently

– Thomas Winkler created this device

• Future support planned in xum1541

– XS-1541 is open source so we can use its routines

– Autodetect for different cables already designed in

– ZoomFloppy has connector pads for it

Teaching the 1571 new tricks

• 1571 is quite an interesting device

– Multi-mode like a C128

– 1541 compatible (1 MHz, 2 VIAs)

– 1571 (2 MHz, 2 VIAs, 1 CIA)

– MFM (WD 1770)

– Index hole sensor

• Burst mode

– SRQ is previously unused IEC line

– Reads at 3.5 KB/s over serial bus but only to C128, writes
at old 400 bytes/s rate

– Backwards-compatible with original transfers

– Looks interesting, but we need 40 KB/s to keep up with
the drive’s raw bitrate

Is it possible?

• We need 40 KB/s (25 µs per byte)

– Plus a few clock cycles to read a byte from the shift
register, toggle handshake lines, loop

• Max CIA transfer rate

– “Theoretically it is even possible to realize bus transfers at
up to 60,000 bytes per second with the C-128’s fast bus
hardware.” (1571 Internals, p. 148)

– Max parameters

– External clock: 2 MHz

– Count down timer: start at 1, toggle output on 0

– 500 Kbits/s (2 µs period)

• Theoretically, it is possible to transfer at 62.5 KB/s,
leaving some overhead room

Apparently this is possible

Implementing SRQ nibbling

• A lot more work to do before ready to release

– Implement drive code

– Lots of changes needed in 1571 mode like different sync
detection

– Want to keep index hole sensor support also

– Modify nibtools to load separate IO routines based on
drive capabilities

– Need to autodetect missing SRQ line

– Fall back to parallel mode automatically

• In the end, all Commodore protected floppies could
be archived and remastered with a ZoomFloppy +
1571

– No hardware mods

Thwarted by Playstation 3 hacking

• Final PCB almost complete, looking for parts suppliers

• Then PS3 USB exploit released

– Just happened to use the same Atmel chips as us

– Supply went from “great” to “none” in weeks

– AT90USB162: Dec 5 2010 delivery

– ATmega16U2: Nov 15 2010 delivery

• Hey, pirates, there are other exploit delivery methods

– D2groove: D2Prog (PIC18F)

– Dingoo A320 console

– TI-84+/SE calculator

• Note: we don’t condone piracy

– But get off my lawn!

Conclusion

• xum1541 firmware already available (GPL)

– Fast IEC transfers

– Even faster transfers and nibbling with parallel cable

– Easy to build if you have some soldering skills

– Stable and well-tested

• New firmware features on the way

– SRQ nibbling on the 1571

– IEEE-488 drive support

• ZoomFloppy should be available for sale soon!

http://root.org/~nate/c64/xum1541

http://jbrain.net/

• Many thanks to: Wolfgang Moser, Christian Vogelsgang,
Jim Brain, Peter Rittwage, Spiro Trikaliotis, Thomas Winkler,
Joe Forster, Till Harbaum, C64Preservation.com, OpenCBM

