Building the ZoomFloppy

Nate Lawson nate@root.org

Presented at ECCC September 18, 2010

- Commodore floppy drive architecture
 - How the drive works
 - Copy protection schemes
- The old way to interface a 1541 and PC (printer port)
- USB interfacing: the new way
 - xu1541 (2007)
 - xum1541 (2009)
- Creating the xum1541 firmware
- Building the ZoomFloppy

Commodore floppy drive architecture

- The first dual CPU home computer was not the C128 (apologies to Bil Herd)
- 2040 dual drive
 - 6502 to talk to the host
 - 6504 to do access the media (GCR encoding)
- IEEE-488 (GPIB) interface to PET

Commodore floppy drive architecture

- 1541 series (1540, 1541-II, etc.)
 - Cost reduction is a kind of performance
 - IEC bus is cheaper serial version of IEEE-488
 - Merged both CPU functions into one with interrupt-driven task queue
- 1571 series
 - Multiple floppy formats (MFM)
 - Burst mode using SRQ line

Copy protection schemes

- Best ones depend on the hardware limits of drive
- 1541 limits
 - 2 KB of RAM, 8 KB ROM
 - No index hole sensor (soft-sectored)

- Whole-track custom format (RAM too small)
 - v-max: fully custom encoding, 10-bit sync marks
 - Epyx (newer)
- Track sync (no IHS)
 - Bump head between tracks and verify data found at proper location
 - Fat tracks (Activision, EA, RapidLok)

Copying protected floppies

- As opposed to cracking protection schemes
- Hardware mods
 - Maverick 8 KB drive RAM expansion
 - Store entire track at once in drive, stream back to host
 - Detectable by checking mirrored addresses
 - Burst Nibbler parallel cable
 - Attaches to unused 8-bit port on VIA
 - Sends one byte at a time, sufficient for full media bitrate
 - Add an index hole sensor
 - 1571 has one built-in for MFM mode
 - Or clever in-drive timer routines
- nibtools/mnib have support reading and writing protected disks
 - Thanks to Peter Rittwage and Markus Brenner

1541 hardware mods

Interfacing with a PC (old way)

- Printer port (LPT)
 - 8 bits bidirectional plus handshake signals
 - Perfect for IEC bus control + parallel transfer
- Problems
 - XA1541, XM, XE, X, P-variants, too many!
 - Caused by evolving and differing voltages on PC ports
 - Opposing goals of low cost vs. functionality
 - Doesn't exist on modern PCs and laptops
 - Also Mac hardware
 - Anything non-x86
 - Fast and low-latency, but too slow for some tricks
 - 1 µs per access (1 MB/sec max)

xu1541

- USB floppy interface by Till Harbaum
 - Cheap
 - All through-hole parts so easy to build
 - Open-source and works well
- Limitations
 - Slow
 - Software USB decoding

- Can't support parallel nibbling and limited RAM so no copying protected floppies
- USB control transfers only
- Not readily available
- Good for its time, especially if you just want to transfer files to unprotected disks

- In 2005, got an XAP1541 and began archiving floppies for C64Preservation.com
 - "Just how did some of those more complicated copy protection schemes work anyway?"
 - Reverse-engineered from original image using VICE drive monitor
- Contributed some fixes to nibtools
- Then PC with DOS and printer port died

xum1541

- 2008: "Hey, there's this new Atmel microcontroller with hardware USB support"
 - Ported xu1541 firmware to the AT90USB, replacing the software USB stack with hardware routines
 - OpenCBM plugin interface so standard tools all work
 - LUFA library by Dean Camera was very helpful
 - AT90USBKEY devel board: \$30
 - Built a custom cable to connect to existing XAP1541
 - No PCB design or difficult soldering, just a cable

xum1541

- More debugging and announced Jan. 2009
- Problems
 - Works fine but have to replug if USB transfer interrupted (^C)
 - No nibbler support, control messages too small for USB overhead (8 bytes each)
 - Only two people built cable (Womo and Christian V.)

xum1541

- New USB protocol
 - USB bulk transfers (32 or 64 bytes)
 - Inline byte handling (no bucket brigade in RAM)
 - Start/end markers to detect interruptions and reset cleanly
- Finished on train in Europe (fall 2009)
 - Fast d64copy
 - nibtools works!
- Problems
 - Infinite listener hold-off
 - To support printers or other slow devices, you have to wait forever for drive to respond
 - 3.3v level mismatch gave some idle current but still safe
 - Still only two users

Building the ZoomFloppy

- Daughtercard approach
 - New Bumble-B board: \$15
 - Would have plugged into this IEC/parallel adapter
 - 7406 for bus isolation

- Assembled several prototypes and works well
 - "Anyone want to build this thing?"
 - Jim Brain: "ok"

Building the ZoomFloppy

- Fully custom PCB by Jim Brain
 - Connectors for IEC, parallel (multiple)
 - Connectors for future IEEE-488 support
 - Fits in a nice enclosure
 - Packaged and for sale (hopefully, soon)

IEEE-488 future support

- Implemented in the XS-1541 currently
 - Thomas Winkler created this device
- Future support planned in xum1541
 - XS-1541 is open source so we can use its routines
 - Autodetect for different cables already designed in
 - ZoomFloppy has connector pads for it

Teaching the 1571 new tricks

- 1571 is quite an interesting device
 - Multi-mode like a C128
 - 1541 compatible (1 MHz, 2 VIAs)
 - 1571 (2 MHz, 2 VIAs, 1 CIA)
 - MFM (WD 1770)
 - Index hole sensor

- Burst mode
 - SRQ is previously unused IEC line
 - Reads at 3.5 KB/s over serial bus but only to C128, writes at old 400 bytes/s rate
 - Backwards-compatible with original transfers
 - Looks interesting, but we need 40 KB/s to keep up with the drive's raw bitrate

- We need 40 KB/s (25 µs per byte)
 - Plus a few clock cycles to read a byte from the shift register, toggle handshake lines, loop
- Max CIA transfer rate
 - "Theoretically it is even possible to realize bus transfers at up to 60,000 bytes per second with the C-128's fast bus hardware." (1571 Internals, p. 148)
 - Max parameters
 - External clock: 2 MHz
 - Count down timer: start at 1, toggle output on 0
 - 500 Kbits/s (2 µs period)
- Theoretically, it is possible to transfer at 62.5 KB/s, leaving some overhead room

Apparently this is possible

Implementing SRQ nibbling

- A lot more work to do before ready to release
 - Implement drive code
 - Lots of changes needed in 1571 mode like different sync detection
 - Want to keep index hole sensor support also
 - Modify nibtools to load separate IO routines based on drive capabilities
 - Need to autodetect missing SRQ line
 - Fall back to parallel mode automatically
- In the end, all Commodore protected floppies could be archived and remastered with a ZoomFloppy + 1571
 - No hardware mods

Thwarted by Playstation 3 hacking

- Final PCB almost complete, looking for parts suppliers
- Then PS3 USB exploit released
 - Just happened to use the same Atmel chips as us
 - Supply went from "great" to "none" in weeks
 - AT90USB162: Dec 5 2010 delivery
 - ATmega16U2: Nov 15 2010 delivery
- Hey, pirates, there are other exploit delivery methods
 - D2groove: D2Prog (PIC18F)
 - Dingoo A320 console
 - TI-84+/SE calculator
- Note: we don't condone piracy
 - But get off my lawn!

- xum1541 firmware already available (GPL)
 - Fast IEC transfers
 - Even faster transfers and nibbling with parallel cable
 - Easy to build if you have some soldering skills
 - Stable and well-tested
- New firmware features on the way
 - SRQ nibbling on the 1571
 - IEEE-488 drive support
- ZoomFloppy should be available for sale soon! http://root.org/~nate/c64/xum1541 http://jbrain.net/
- Many thanks to: Wolfgang Moser, Christian Vogelsgang, Jim Brain, Peter Rittwage, Spiro Trikaliotis, Thomas Winkler, Joe Forster, Till Harbaum, C64Preservation.com, OpenCBM