
TLS/SSL MAC security flaw

Nate Lawson
nate@rootlabs.com

Jan. 10, 2008

Decoding with WireShark

Overview of typical session

ClientHello

ServerHello

Certificate

ClientKeyExchange

ChangeCipherSpec

ChangeCipherSpec

Finished

Finished

ServerHelloDone

ApplicationData ApplicationData

Client Server

TLS 1.1 security fixes

• Two security flaws fixed since TLS 1.0

– Implicit Initialization Vector (IV) is replaced with an
explicit one

– Handling of padding errors changed to not report
decryption_failed

Credit for both: Bodo Moeller of OpenSSL

• More details and discussion on my blog:

http://rootlabs.com (select Blog)

CBC encryption

P1

AESEnc

+IV

C1

P2

AESEnc

+

C2

P3

AESEnc

+

C3

CBC decryption

C1

AESDec

+IV

P1

C2

AESDec

+

P2

C3

AESDec

+

P3

TLS CBC padding

• Padding needed if message is not
multiple of cipher block size

– Pad remaining bytes of block with bytes of
PaddingLen - 1

– 3 bytes of padding = 0x2 0x2 0x2

• Example: AES-CBC, 30 bytes data

– P1: 16 bytes data

– P2: 14 bytes data || 0x1 0x1

Padding error timing attack

• Two different errors

– If padding verification fails, “padding_error”

– If subsequent integrity check fails,
“bad_record_mac”

• Attacker can’t see these (encrypted)

– But, server may exit out early if padding
incorrect and not bother to check MAC

– Creates an exploitable timing channel

CBC padding attack

• Allows guessing the last byte of a
sniffed encrypted record

• Attack overview

– Modify and replay entire record

– Observe how long it takes for error to be
returned

– Repeat until it takes a little longer

– Padding passed check and thus server proceeded
to check the MAC of the data

Example attack scenario

• Original message 32 bytes data

– C1: AES(IV ⊕ 16 bytes data)

– C2: AES(C1 ⊕ 16 bytes data)

• Attacker modifies message

– C1: 15 bytes garbage || (GuessByte ⊕ 0x0)

– C2: same

– Truncates external length to 31 bytes

• If guess byte is correct, padding verifies and
server proceeds to MAC stage

– P2: 15 bytes garbage || 0x0

– GuessByte ⊕ RealByte ⊕ 0x0 = 0

– PaddingLen = 1 means append one byte of 0x0

Conclusion

• Detailed error reporting harmful to
crypto

– Surprise! You want nothing more than a
big, giant FAIL at the end of your protocol

• Side channels reveal enough for an
attack, even when data is encrypted

– Surprise! Proceed (with caution) even when
an error is encountered

Recommended reading

• [TLS06] The Transport Layer Security (TLS) Protocol, Version 1.1.
http://tools.ietf.org/html/rfc4346

• [Resc02] Rescarola, E. Introduction to OpenSSL programming.
http://www.rtfm.com/openssl-examples/

• [WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 Protocol.
1996. http://citeseer.ist.psu.edu/wagner96analysis.html

• [BB03] D. Boneh and D. Brumley. Remote Timing Attacks are Practical.
Proceedings of the 12th USENIX Security Symposium, August 2003.
http://citeseer.ist.psu.edu/article/boneh03remote.html

• [M04] B. Moeller. Security of CBC Ciphersuites in SSL/TLS: Problems and
Countermeasures. May 2004. http://www.openssl.org/~bodo/tls-cbc.txt

