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Decoding with WireShark
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TLS 1.1 security fixes

• Two security flaws fixed since TLS 1.0

– Implicit Initialization Vector (IV) is replaced with an 
explicit one

– Handling of padding errors changed to not report 
decryption_failed

Credit for both: Bodo Moeller of OpenSSL

• More details and discussion on my blog:

http://rootlabs.com (select Blog)
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CBC decryption
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TLS CBC padding

• Padding needed if message is not 
multiple of cipher block size

– Pad remaining bytes of block with bytes of 
PaddingLen - 1

– 3 bytes of padding = 0x2 0x2 0x2

• Example: AES-CBC, 30 bytes data

– P1: 16 bytes data

– P2: 14 bytes data || 0x1 0x1



Padding error timing attack

• Two different errors

– If padding verification fails, “padding_error”

– If subsequent integrity check fails, 
“bad_record_mac”

• Attacker can’t see these (encrypted)

– But, server may exit out early if padding 
incorrect and not bother to check MAC

– Creates an exploitable timing channel



CBC padding attack

• Allows guessing the last byte of a 
sniffed encrypted record

• Attack overview

– Modify and replay entire record

– Observe how long it takes for error to be 
returned

– Repeat until it takes a little longer

– Padding passed check and thus server proceeded 
to check the MAC of the data



Example attack scenario

• Original message 32 bytes data

– C1: AES(IV ⊕ 16 bytes data)

– C2: AES(C1 ⊕ 16 bytes data)

• Attacker modifies message

– C1: 15 bytes garbage || (GuessByte ⊕ 0x0)

– C2: same

– Truncates external length to 31 bytes

• If guess byte is correct, padding verifies and 
server proceeds to MAC stage

– P2: 15 bytes garbage || 0x0

– GuessByte ⊕ RealByte ⊕ 0x0 = 0

– PaddingLen = 1 means append one byte of 0x0



Conclusion

• Detailed error reporting harmful to 
crypto

– Surprise! You want nothing more than a 
big, giant FAIL at the end of your protocol

• Side channels reveal enough for an 
attack, even when data is encrypted

– Surprise! Proceed (with caution) even when 
an error is encountered
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