
Nate Lawson | Root Labs | 2008/4/11 | Session Code: HT1-402

Designing and Attacking DRM

2

If you pay attention, you’ll learn…

• Why software protection matters

• Attack methods
– Tools & techniques

• Design principles
– Model: mesh vs. chain

– Anti-debugging is no panacea

• Update: who’s cracked or not

3

My background

• Root Labs founder
– Design and analyze security schemes

– Emphasis on embedded, kernel, software protection, and
crypto

• IBM/ISS
– Original developer of RealSecure IDS

• Cryptography Research
– Co-designed Blu-ray disc content protection layer, aka BD+

4

In the past, DRM was simple

• Copy protection (1980’s)

– Simple goal: only run from the original floppy media

– No privacy problems

– Relatively harmless

– Some games did format themselves if not properly cracked

– Legal restrictions only via copyright, not on analyzing schemes or

releasing tools

5

Today, bad DRM is too common

• Goals overly complex

– Can share among a few devices but not too many

– Expiration dates, limited number of plays

• Privacy problems

– Network access

– Cookies

• Collateral damage when it goes bad

• Dangerous and unclear legal environment

• If there’s going to be DRM, make it simpler!

6

Definition: software protection

• Software protection is the technical enforcement
mechanism

– DRM is the policy, a different talk

• Composed from:

– Integrity protection

– Obfuscation/anti-debugging

– Encryption/key management

– Renewability

Why you will care

8

Laptop disk encryption

• Nope!

– “Cold Boot Attacks on Encryption Keys”, Halderman et al

– Extract FileVault key from RAM after a reboot

– Or, freeze RAM with cold spray and move to another computer

• If you use software encryption, you need effective
obfuscation

– Since the key is somewhere in RAM, key hiding vital

– Exactly same problem as DRM

• Common myth: software protection only matters for DRM

9

Exploit protection

• If you want to make exploits difficult, obfuscate

– Address layout randomization

– Initial stack configuration

– Future: compilers will randomize code generation

• Integrity checking

– Stack canaries

– Vista PatchGuard (aka Kernel Patch Protection)

• Same measures as DRM

10

Malware analysis

• Malware hides with same techniques as DRM

– But worse!

• DRM designers have the harder problem

– “Do no harm”

– Debuggers must be allowed for legitimate work

– No persistent modifications

– Avoid interfering with Vista PatchGuard

• All these areas require knowledge of the same techniques
as designing or analyzing DRM

Designing software protection

12

Software protection design principles

• Mesh vs. chain

– Protection measures should be mutually enforcing

– Example: two threads hashing each other

– A chain is a long series of links

– Failure of any one link and it falls apart

• Full integration with application functions

– Protection must be intertwined with main functionality

• Renewability

– Provide yourself a way to repair hacks

13

Integrity protection

• Goal: respond to modifications

– Explicit: detect and perform some action

– Implicit: modifications directly cause change

• Many things can perturb the environment

– Patching

– INT3 breakpoints

– Attaching debugger

• Implicit integrity protection better than explicit

– Check/response are not separable logic

– Prevent “divide-and-conquer”

14

Obfuscation/anti-debugging

• Goal: make inspection more difficult

– Obfuscation: logic becomes harder to understand or patch

coherently

– Anti-debugging: respond to the act of inspecting the program

• Better if mixed with integrity protection

– Example: hash the results of various anti-debugging checks and

use as key to decrypt next function

• Most anti-debugging is poorly-implemented

– Single point checks with if/then logic

15

Encryption/key management

• Encryption in software protection is a type of
obfuscation

– Cipher+key in some form present in memory

• Key management

– Broadcast encryption

– Encrypt content key with lots of keys

– Stop doing this for known-hacked keys

– Software protection can make this more versatile

– “You must be at least this unhacked to decrypt the

video”

16

Renewability

• Every scheme needs a survival plan

• Online updates

– Common in a PC environment

– Caveats: version roll-back, privacy

• Piggy-backing on content

– Better in embedded/cross-platform environments

– Caveat: heterogeneity complicates testing

– Examples

– DTV/Dish send updates in channel stream (“ECMs”)

– BD+ puts protection logic on each Blu-ray disc

Tools & techniques

18

Historical reverser’s toolbag

• In the past

– debug.exe

– SoftICE with iceext

– IDA Pro doing static disassembly

– Hex editor

• Today

– IDA, Ollydbg

– Bindiff, binnavi

– Paimei

– Custom tools

19

Tip: go to ring 0

• Even if you’re attacking a user-mode app, kernel access
gives a powerful viewpoint

– Full access to thread state

– No modification of process memory (i.e., int3 instruction)

– Access to page protection, MSRs, etc. allow stealth schemes

• More advanced

– Patch bochs/qemu

– Write your own hypervisor debug stub

20

WinDbg is awesome

• Powerful tool for reversing

– Kernel and usermode access

– Automatic symbol server

– x86 32 and 64-bit support

– Extensions for common tasks (“!peb”)

– Open plug-in interface

– Free

• Downsides

– No third-party CPU extensions (sorry ARM)

• Let’s make it the next SoftICE

21

Tip: use debug registers creatively

• Intel processors have hardware breakpoints

– DR0-3: addresses to be monitored

– DR6: status bits that describe which event occurred

– DR7: configures the type of event to monitor for each address

• Interesting side effects

– DR4-5 are aliases for DR6-7 if the CR4.DE bit is clear

– DR7.GD bit causes reads or writes to any of the debug registers to

generate an INT1

• Legacy behavior from ICE days

Update on recent hacks

23

Recent hacks this year

• Nintendo Wii

– Loader compromised (tmbinc; Dec)

– Software save game hack (bushing, segher, tmbinc; Feb)

• Windows Media DRM

– drmdbg decrypts keys and is staying current with updates (Jan)

• iTunes

– requiem decrypter released, removed via C&D (Feb)

– Tools that rip audio samples from memory still exist (QTFairUse6,

myFairTunes7)

• iPhone

– Bootloader software compromise (iPhone Dev Team; March)

24

AACS vs. BD+

• Both allow updates to security

– AACS: new MKBs and player keys

– BD+: new software on discs

• Effectiveness metrics

– How long each update survives before being hacked (L)

– How frequently the updates appear (T)

– If L < T, you are releasing new discs into an already-hacked

environment!

• Goal: increase L, decrease T

Timeline of hacks

2007 2008

v1 (Apr 2006) v3 (May) v4 (Oct) v7 (Apr) Jul? Oct?

AACS

BD+

?

X X XX

v1 (Oct)

X

Mar

• Not doing so hot

– Very low L (length of time update is unbroken)

– -2 … +2 weeks if you throw out the initial period

– Long T (time between updates)

– < 3 months not allowed by business agreements

– Up to 18 months if hacked player not identified

– Appears to be steady now at every 6 months

• Game over or …?

– Unmasking the Slysoft oracle

– Sequence keys

26

AACS analysis

27

BD+ analysis

• Too early to tell

• Flexible L

– Software protection can be a small or large barrier, depending on

effort invested

• Potentially lower T

– Update schedule in hands of disc authors

• Potentially less parties to coordinate with for updates

• Just test and ship a disc

• 2008 will be an exciting year!

Questions?

For more on software protection, check out my blog “rdist” at:

rootlabs.com

