
Beyond Applied Cryptography:
Designing a Secure Application

�

Session #66

�

Managing Complexity

0

10

20

30

40

50

60

70

80

90

100

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

M
ill

io
ns

 o
f T

ra
ns

is
to

rs
 in

 In
te

l C
P

U
s

0

10

20

30

40

50

60

70

80

90

CPU data courtesy Intel Corp.

M
ill

io
ns

 o
f L

in
es

 o
f C

od
e

in
 M

ic
ro

so
ft

O

pe
ra

tin
g

S
ys

te
m

s

������	�
���
�����

�

About Cryptography Research

� Solve difficult real-world problems
– Systems designed by CRI engineers protect

>$50B annually
– Industries: Financial, content, pay TV,

communications

� Specialties
– Tamper-resistance, content security,

platform security

�

About Nate

� Designs network security products
– RealSecure
– Storage Appliances
– NAT TCP splicer, layer2 IPSEC, etc.

� Companies: ISS, InfoGard, Decru
� FreeBSD

– ACPI, Storage

�

Cryptography in 3 Slides

�

1. Encryption Is Not Security

� Many systems use encryption
– 802.11b WEP
– DVD CSS

� Failures result of misuse
– Constant re-keying
– Poor key management

� Neither fell first to brute force of key

�

2. Strength Is Not Assurance

� Strength
– Resistance to Known Attacks
– Example: key lengths

� Assurance
– Likelihood to Fail to Unknown Attacks
– Example: SSL 3.0 hash/keying

�

3. Use standards

� Good standards last
– SSL 3.0 (1996)
– SHA-1 (1996)
– DES (1977)

� New crypto suffers 50% mortality rate

�

What doesn’t work

� Committee designs

��

What doesn’t work

� Obscurity
– Increases cost for initial attack, but not

repeat attacks
– Reduces relying party’s ability to gain

assurance

��

What doesn’t work

� Fixed certification standards
– Standardized evaluations only catch

standardized attacks…

��

What doesn’t work

� Requirements that go against security
– More speed, more features, less cost, less

development time
� “Hail Mary” security evaluations

– Too late: Need security by design

��

Example: Crypto Storage Product

1. “We’ll encrypt the data.”
2. Read crypto book
3. Argue about algorithm choice
4. Argue about key length
5. Implement using downloaded code
6. Test

1. Encrypted data looks “random”
2. Data decrypts correctly

7. Ship!

��

Failure: Cipher Mode

� Customer generates secret image
� Encrypts it with new product
� Result?

��

What went wrong?

� Focused on unlikely attacks
– Algorithm
– Key Length

� Overlooked likely attacks
– Improper cipher mode
– Others: RNG, key management, side-

channel leakage, etc.

��

Actual Risk vs. Perceived Risk

� Real Quote:
– “Smart cards with triple DES are three times

as secure as those using single DES.”

Everybody knows this is wrong…

Attackers almost never
waste time and money on
brute force

Even when it’s easy, there
are easier attacks

��

Protocol Analysis

��

Simple Protocol Analysis
� On three big pieces of paper…

���� Chart the protocol flow
• Include every message that can be sent
• Error messages, optional messages, etc.

���� List what can be discovered about each cryptographic value
• Each crypto step generally reveals something new
• List everything (helps catch unintended interactions)

���� Diagram the state machine of each participant
• Include negotiated options, failure states, crypto, etc.

� Reconcile possible end states against objectives.

��

Common Protocol Weak Spots

� Algorithm negotiation
� Version negotiation (backward + forward)
� Man-in-the-middle
� Message replay (within a session, multiple sessions)
� Message forwarding & impersonation

– A connects to B, who connects to C pretending to be A
� Certificate handling & validation (or lack thereof)
� Out-of-sequence messages
� Error handling reveals information
� Denial of service
� Timing analysis
� Excessive complexity or lack of defined state machine
� Improper or inadequate use of hash functions
� Inefficiencies (round trips)
� Redundant information
� Management/debug functions (code upgrades, etc.)

��

10 Suggestions

� Goal is higher assurance that system
meets security requirements

� Security is absence of functionality

� This is hard…

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.

Assign a dollar-value to your risk.
Get management support for the estimate.

Spend before problems get out of control.

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.

Where are the single points of failure?
Will those who control your risk share it?
Are the people you trust actually trustworthy?

What is their historical track record?
Do they make unsubstantiated claims of “security”?
Who can vouch for their work?

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.

Don’t mistake confidence for experience.
Encourage people to look for flaws in your work.
Don’t assume attackers won’t “figure it out”.

�����

�������
����

�
�
�
�
��

!�
"

�
!

#
�
�
�
�

$
�%
�� ��������
&'�
������ �&� ��(

)'���� ��������
' &�
 �������
�

'���� *���%

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.

Assume that users are lazy and gullible.
Assume that engineers make mistakes.
Beware of the rear view mirror.

Your greatest risk may not be what went wrong last time.

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.
	 Minimize complexity.

Isolate critical components.
Beware of complex interfaces.
Have the courage to resist adding features.

��������	
����
�������	
���
��

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.
	 Minimize complexity.

 Spend more on evaluation than design.

Evaluations can only prove insecurity.
Make sure evaluators are skilled and objective.

Don’t impose unreasonable restrictions.
Requires creativity, experience, attention to detail.

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.
	 Minimize complexity.

 Spend more on evaluation than design.
� Be a skeptic.

Assume systems are insecure unless you have evidence to the
contrary.

Avoid anything undocumented or untestable.
Ask tough questions and demand responses.

Don’t be impressed by the line:
“We can’t tell you for security reasons.”

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.
	 Minimize complexity.

 Spend more on evaluation than design.
� Be a skeptic.
� Plan for trouble.

What happens after a breach?
Will you know if there was a breach?

Keep good audit records.
Are “impossible” attacks really impossible?

��
�������	��
������

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.
	 Minimize complexity.

 Spend more on evaluation than design.
� Be a skeptic.
� Plan for trouble.

 Use both internal ���� external expertise.

Risks are much higher if you rely only on just one.
Get multiple opinions, especially if you fear:
piracy, fraud, or espionage.

��

10
 S

ug
ge

st
io

ns
� View security in economic terms.
� Think about how risk is allocated.
� Be humble and know your limits.
� Make realistic assumptions.
	 Minimize complexity.

 Spend more on evaluation than design.
� Be a skeptic.
� Plan for trouble.

 Use both internal � external expertise.
� Study all layers of the system

Transistors up to business objectives

��

Unsolved Problems

� Why does the future take so long to
appear?

� Why is it so incomplete when it does?

Some unsolved problems that really bug me…

��

Unsolved: Application Filtering

� Progression of the firewall
– IP address, port filtering
– Stateful inspection (Latest: IPS)
– Application proxy

��

Unsolved: Application Filtering

� Protocols are multiplying
� Firewalls stopped evolving at the HTTP

layer
– Everything runs on port 80
– Protocols change greatly between versions
– “All or nothing” filtering

��

Unsolved: Application Filtering

� Proposal: developer tools output protocol
specification
– Client and server software use spec to

format messages
– Firewall uses protocol spec to disallow

improper messages

��

Unsolved: Certification Aging

� Certification specifies testing conditions
– FIPS 140: certificate shows tested

configuration
– Common Criteria: profile lists requirements

��

Unsolved: Certification Aging

� Problem: No one has that exact
configuration and soon the vendor
releases a new version
– Windows NT level 2 cert (but without

network)
– Netscape level 2 cert (but you need a sticker)

��

Unsolved: Certification Aging

� Proposal: Use a questionnaire
– Vendors answer standardized questions

about their system
– Customers (along with evaluators) use the

answers to identify application-specific
questions

– Vendor publishes the results

��

Conclusions

When designing or evaluating a secure application
remember:

1. Encryption is not security
2. Strength is not assurance
3. Use standards

If in doubt, call an expert…

��

Contact Information
For more information, or to discuss how Cryptography Research can help
with a security problem:

Nate Lawson
nate@cryptography.com
www.cryptography.com

����	�����

��

Single Points of Failure

Master keys &
passwords

Software update
procedures

Tamper
resistance

Passwords &
login procedures

Input validation
routines

Security protocolsNon-standboxed
codeSandboxes

CPU execution
correctness

Compiler
correctness

Executable
program storage

DriversEngineering
personnel

Threat detection
systems

Crypto algorithmsRevocation
systems

Key storage &
metadata

Data backup &
redundancy

Hard disk
controllers

ROM/E2/BIOS
contents

E
xa

m
pl

es

��

Trust Boundaries

� Designers should isolate keys & critical components
– Putting all your eggs in one basket is actually good

• Risking all your eggs in many baskets is dangerous.
• Fewer critical components means they can be tested better.

� Most products have poorly-defined boundaries.
– Are the perimeters (or contents) too complex?

• Typical Windows PC is too complex to secure internally.

– What can cross the perimeter?
• APIs, network protocols, chip I/Fs, control/audit/backup data…

– Analyze single points of failure (inside & outside) [next]

��

Tools

� Gathering Information
– Crypto toolkits (Crypto++, CryptoLib, etc.)
– Statistical toolkits (custom)
– Bignum libraries (NTL for Lattice Reduction)
– Compiler, system analysis tools, debugger, decompiler
– Network traffic recorder (tcpdump)

� Brute force / disaster recovery
– FPGA board, CPU farm
– Password dictionaries
– Hard drive imaging tools
– Password recovery tools/services

� Tamper Resistance
– DPA workstation
– Oscilloscope
– X-ray, Probe station, microscopes, e-beam, FIB

