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My background

• Root Labs founder
– Design and analyze security components

– Focused on:

• Embedded and kernel security

• Software protection

• Crypto

• IBM/ISS
– Original developer of RealSecure IDS

• Cryptography Research
– Co-designed Blu-ray disc content protection layer, aka BD+
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How I got interested in toll passes

• I have never used FasTrak
– Privacy concerns

• Bridge

• Freeways

– Pay cash or take public transit

• How does it work?
– Almost no analysis available online

– Title 21 (protocol) is a standard though

• What’s really inside?
– Buy transponder from Safeway without signing up ($26 cash)

• Perhaps privacy issues can be fixed?
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What is electronic toll collection?

• Automatic debit of an account for use of a bridge 
or toll road

• Many possible implementations
– RFID transponder

– Image recognition of license plate

• Current systems
– E-ZPass (East Coast)

– TollTag, Sunpass, etc.

– FasTrak (Bay Area + Southern California)



Electronic toll collection

Readers

Windshield
Transponder

“Lane pwned”

Screen grab courtesy of KTVU News
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Tracking and privacy

• Few realize all freeway travel is also tracked
– Transponders are queried by readers on signs to generate 

realtime traffic statistics (511.org)

– Separate agency (and thus servers) from toll collection, but 
same transponder

Screen grab courtesy of KTVU News
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Tracking and privacy

• Toll transactions are logged
– Indefinitely?  No info in privacy policy

• Freeway travel is separately logged by 511.org
– The transponder ID is “anonymous” and “only stored for 24 

hours” (KTVU news report)

– “Users remain anonymous through … encryption software 
that scrambles each FasTrak toll tag ID” (privacy policy)

• Lawyers know this info is available
– “FasTrak gets about one subpoena a month for toll records.”

(KTVU news report)

– Wouldn’t they stop bothering if this info wasn’t useful?
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Adding anonymity afterwards difficult

• Conventional approach (adding anonymity)

– ID → Hash(ID)

• Not anonymous, just exchanges one ID for another

• Subject to correlation attacks

• Ignores meta-information (timing, length, date)

• AOL anonymized search term scandal (2006)
– Real names and addresses could be recovered by correlating 

info across multiple searches
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Robust anonymity has to be built-in

• Reduce collection
– Query based on a random timer, not all cars

– Only one 1 out of 100 cars necessary to get average speed

• Limit distribution

– Calculate speed and throw away original IDs after two readings

– Limit the number of systems that touch it along the way

• Expire aggressively

– Only statistic needed is sign-to-sign interval

– Discard IDs after a few minutes

• Cryptography

– “Untraceable RFID Tags via Insubvertible Encryption” (Ateniese,
Camenisch, and de Medeiros)

– "A Scalable, Delegatable Pseudonym Protocol Enabling Ownership 
Transfer of RFID Tags" (Molnar, Soppera, and Wagner)
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Title 21 system history

• California legislature passed a technical law
– Title 21, Chapter 16 (1992)

– Developed mostly by Texas Instruments

• FasTrak
– All Bay Area bridges (BATA)

– Orange County toll highways

– Airport parking lots

• Over one million transponders purchased
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Title 21 standard

• Layer 1: modulation and frequency
– Reader downlink

– Transponder uplink

• Layer 2: packet framing
– Start sequence, checksum

• Layer 3: packet types
– Poll messages

– Responses

• Layer 7: allocation of IDs among agencies
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Layer 1: modulation and frequency

• Downlink from reader
– ~900 MHz carrier frequency

– Square-wave AM

• Unipolar ASK of the carrier using Manchester encoding

• “1”: signal during first half, “0”: signal during second

• Uplink from transponder
– Backscatter of carrier via antenna polarization

– Dual-frequency AM

• FSK of 1200 KHz/600 KHz (“1” and “0”, respectively)

• 300 Kbps data rate (both directions)



• Downlink from reader

• 300 Kbps data rate

• 600 KHz square wave (ASK)

– “1” = high in first half of period

– “0” = high in second half of period
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Layer 1: reader modulation

1 1 0



• Uplink from transponder

• 300 Kbps data rate

• 1200/600 KHz square wave (FSK)

– “1” = higher frequency

– “0” = lower frequency
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Layer 1: transponder modulation

1 1 0
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Layer 2: packet framing

• Wakeup signal before message
– 33 µs burst of 1-bits

– 100 µs no signal

• Packet start: 0xAAC

• Ends with 16-bit CRC
– Standard says “CRC-CCITT”

– Spec bug: initial value is 0, not 0xFFFF like CCITT says

• If you actually implemented the Title 21 spec, you’d be 
incompatible
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Layer 3: standard messages

Polling Message Type 1 (8000)

– Requests the transponder to 
send its ID

– Agency code, 16-bit

Data Message Type 1 (0001)

– Transponder ID, 32-bit

Acknowledge Message Type 2 (C000)

– Confirms reception of the 
transponder ID

– Transponder ID, 32-bit

– Reader ID, 32-bit

– Status, 16-bit

Reader Transponder
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Enrollment process
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Enrollment process

• Validation code is just toll tag serial number in hex

• Used as a checksum for typos
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Diving into the transponder

“If a Toll Tag fails to operate for 
reasons other than abuse… we will 
replace it…”
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Diving into the transponder

Battery

Antenna (XMIT)

Antenna (RCV)

TI MSP430

Buzzer

Demodulation
circuit
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Transponder operation

• Receive side

• Signal is received and amplified (analog)

• Demodulated and presented to pin 2.5 as a square 
wave

• Transmit side

• Carrier reflected back by swapping pins 1.6 and 1.7 
quickly

• Buzzer

• Timer interrupt + XOR (pins 2.0 and 2.1)

Thanks go to Adam O’Donnell for the RF help
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MSP430 basics

• Low-power 16-bit microcontroller
– 2, 4, and 6-byte instructions

• Kinda strange:  MOV @R14+, R15

– Von Neumann address space (shared code/data)

• Helpful for stack/integer overflows (Travis Goodspeed)

– Self-programmable flash memory

• Persist that exploit

• MSP430F1111A
– Peripherals: timer, comparator, ports (address 0)

– 128 bytes RAM (0x200)

– 256 bytes data flash (0x1000)

– 2 KB code flash (0xF800)
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FasTrak MSP430 memory map

Data flash (1000 - 10FF)

Boot ROM (0C00 - 0FFF)

RAM (0200 - 027F)

Peripherals (0000 - 01FF)

Code flash (F800 - FFFF)

Interrupt vectors (FFE0 - FFFF)
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Dumping the firmware

• Internal firmware is protected by JTAG fuse
– Normal programming method is via JTAG

• Bootstrap loader (BSL)
– 256-bit password allows access to flash

• Probably checked with memcmp()

• Go see Travis Goodspeed’s talk on timing attacks in the 
BSL

• Rule 1: always try the front door
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Old transponders are not locked

• JTAG fuse is not set
– Plug in microcontroller and read flash memory

– Verified on a transponder from Southern California

• Newer transponders are locked
– Need more magic to verify their contents
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Bypassing the JTAG fuse

• Silicon magic courtesy of Chris Tarnovsky
– Depackage chip

– [Fuse magic happens here]

– Rebond to DIP package

– Read out flash

• Code was identical to unlocked
transponder

If you make silicon, Fly Logic 
does amazing analysis work.

http://flylogic.net/
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Monitoring transponder IO

• Add header and socket for DIP CPU
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Monitoring transponder IO

• FPGA tap board and socket on breadboard
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What’s inside?

• Load code with IDA MSP430 plugin
– Full reply messages with checksum laid out in order

– Main loop: switch (packetLen); dispatch handler

– Timer interrupts, comparator trigger

• Build a modified msp430simu
– Cycle-accurate simulator in python

– Breakpoint/log support routines

• Checksum

• Memcpy

• Receive (poll) for packet

• Transmit packet

• Beep
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Reader request messages

• Standard
– Request for ID (8000, 8 bytes)

• Reserved by spec but not supported by firmware
– Encrypted ID request (80xx, 11 bytes)

• Agency code (16 bits)

• Proprietary TI encryption key (24 bits)

– Encrypted unknown message (88xx, 13 bytes)

• Transponder ID (32 bits)

• Proprietary TI encryption key (24 bits)

Lengths include “AAC” header, rounded up to nearest byte.
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Reader request messages

• Supported by firmware but not specified
– 11-byte requests

• 00DE, 01DE, 02DE, 03DE, 0480, 04DE

– 36-byte requests

• 01DF, 05DF

– 37-byte requests

• 05DE
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Transponder reply messages

• Standard
– ID response (0001, 10 bytes)

• Reserved and supported by firmware
– ID and serial response (0007, 22 bytes)

• “Block A data” (128 bits) which is actually:

– Unknown (16 bits)

– Transponder ID (32 bits)

– Unknown (16 bits)

– Transponder serial number (BCD, 48 bits) 

– Padding (08FF)

• Reserved by spec but unsupported
– “Block A and B, C, or D data” (000x, 38 bytes)
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Transponder reply messages

• Supported by firmware but not specified
– Misc ID+serial messages

• 0002, 38 bytes

– 16 bytes empty

• 0005, 38 bytes

– Bits checked when processing other msgs

– Empty messages (for future?)

• 5F07, 30 bytes

• 0003, 38 bytes

• 0004, 38 bytes

• 5F06, 38 bytes
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Reader response messages

• Standard
– Status reply (C000, 16 bytes)

• Transponder ID (32 bits)

• Reader ID (32 bits)

• Status code (16 bits)

• Reserved but not supported by firmware
– Unknown response 1 (C00x, 20 bytes)

– Unknown response 2 (C00x, 36 bytes)

• All the above + 128 bits “data”



What’s not inside?



CRYPTO.
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Cloning attacks

• Passive cloning
– Set up a receiver near a freeway

– Record IDs as they are transmitted to reader

• Active cloning
– Drive past parking lots, shopping centers, etc.

– Use portable reader to scan and log IDs of parked cars

• Missing cryptographic property: replay resistance
– Reader proves itself to transponder

– Transponder proves itself to reader
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Monetizing cloning attacks

• Create a subscription service
– Users get customized transponders or hack existing ones

– Device downloads new IDs from PC over the air

– Each ID is used only once, preventing pattern analysis

• Low risk
– Failure to read transponder = $29 fine

– Service can pay penalty for subscribers

• Potential customers
– Trucking companies

– Drug couriers
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Digging still deeper…

• Does FasTrak write data to your transponder?
– “FasTrak is a read-only device. There's no memory to write 

anything to.” (John Goodwin, BATA)

– Best interpretation: “We only use it in a read-only manner and 
are not aware our vendor used a flash device”

• But there is memory and it is writeable
– MSP430F1111A is flash-based, only the BSL is in ROM

– Supports in-system erase/rewrite



40

Firmware has ID update routine

• Flash write subroutine is present in firmware

• Called from multiple places in packet processing 
function

• Appears to be used to update the IDs of various 
message responses stored at 0x1000

mov   #0A550h, &FCTL2

mov   #0A500h, &FCTL3

mov.b @R14+, 0(R12)
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IDs can be wiped/overwritten from remote

• Flash update can be triggered with a couple 
messages
– Packet 1: prepare to flash

– Packet 2: data to write

• Update routine
– Calculates checksum of data from packet 

– Writes it to various locations of IDs within pre-computed 
response messages stored in flash

• Caveat: update routine only tested in simulator so 
far
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Alibi attack

• Establish presence elsewhere during crime
– Read and save neighbor’s FasTrak ID from parked car

– Send message to update his transponder with your ID

– He goes to work at 9 am, you commit crime

– Subpoena records: you were on the bridge at 9 am!

• Questions
– Is FasTrak data really considered so indisputable?

– Will this alibi hold up in court?
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Contacting the vendors

• FasTrak is:
– A technical standard ratified as law by the California 

legislature

– Administered by CalTrans

– Locally run by Metropolitan Transportation Commission 
(MTC), Bay Area Toll Authority (BATA), Orange County 
Transportation Corridor Agencies (TCA), etc.

– With devices potentially provided by multiple vendors, but in 
practice, mostly Sirit

• No response after …
– Email contact form on bayareafastrak.org

– Sending business card with reporter who later talked to BATA

– Speaking to CalTrans consultant



Conclusions

• Electronic toll collection needs improvement
– Excessive loss of privacy in current usage

• Please fix this before we move to license plate recognition

– Clonable if no encryption

– Untrustworthy for legal evidence

• Transponder IDs can be overwritten over-the-air

• Found many surprises when opening the box, 
even with an established system
– I’m happy to explain the details for free to any FasTrak 

authorities who contact me

Contact: nate@rootlabs.com Info/blog: rootlabs.com


