
Highway to Hell: Hacking Toll Systems

Nate Lawson
Blackhat USA

2008/8/6



2

My background

• Root Labs founder
– Design and analyze security components

– Focused on:

• Embedded and kernel security

• Software protection

• Crypto

• IBM/ISS
– Original developer of RealSecure IDS

• Cryptography Research
– Co-designed Blu-ray disc content protection layer, aka BD+



3

How I got interested in toll passes

• I have never used FasTrak
– Privacy concerns

• Bridge

• Freeways

– Pay cash or take public transit

• How does it work?
– Almost no analysis available online

– Title 21 (protocol) is a standard though

• What’s really inside?
– Buy transponder from Safeway without signing up ($26 cash)

• Perhaps privacy issues can be fixed?



4

What is electronic toll collection?

• Automatic debit of an account for use of a bridge 
or toll road

• Many possible implementations
– RFID transponder

– Image recognition of license plate

• Current systems
– E-ZPass (East Coast)

– TollTag, Sunpass, etc.

– FasTrak (Bay Area + Southern California)



Electronic toll collection

Readers

Windshield
Transponder

“Lane pwned”

Screen grab courtesy of KTVU News



6

Tracking and privacy

• Few realize all freeway travel is also tracked
– Transponders are queried by readers on signs to generate 

realtime traffic statistics (511.org)

– Separate agency (and thus servers) from toll collection, but 
same transponder

Screen grab courtesy of KTVU News



7

Tracking and privacy

• Toll transactions are logged
– Indefinitely?  No info in privacy policy

• Freeway travel is separately logged by 511.org
– The transponder ID is “anonymous” and “only stored for 24 

hours” (KTVU news report)

– “Users remain anonymous through … encryption software 
that scrambles each FasTrak toll tag ID” (privacy policy)

• Lawyers know this info is available
– “FasTrak gets about one subpoena a month for toll records.”

(KTVU news report)

– Wouldn’t they stop bothering if this info wasn’t useful?



8

Adding anonymity afterwards difficult

• Conventional approach (adding anonymity)

– ID → Hash(ID)

• Not anonymous, just exchanges one ID for another

• Subject to correlation attacks

• Ignores meta-information (timing, length, date)

• AOL anonymized search term scandal (2006)
– Real names and addresses could be recovered by correlating 

info across multiple searches



9

Robust anonymity has to be built-in

• Reduce collection
– Query based on a random timer, not all cars

– Only one 1 out of 100 cars necessary to get average speed

• Limit distribution

– Calculate speed and throw away original IDs after two readings

– Limit the number of systems that touch it along the way

• Expire aggressively

– Only statistic needed is sign-to-sign interval

– Discard IDs after a few minutes

• Cryptography

– “Untraceable RFID Tags via Insubvertible Encryption” (Ateniese,
Camenisch, and de Medeiros)

– "A Scalable, Delegatable Pseudonym Protocol Enabling Ownership 
Transfer of RFID Tags" (Molnar, Soppera, and Wagner)



10

Title 21 system history

• California legislature passed a technical law
– Title 21, Chapter 16 (1992)

– Developed mostly by Texas Instruments

• FasTrak
– All Bay Area bridges (BATA)

– Orange County toll highways

– Airport parking lots

• Over one million transponders purchased



11

Title 21 standard

• Layer 1: modulation and frequency
– Reader downlink

– Transponder uplink

• Layer 2: packet framing
– Start sequence, checksum

• Layer 3: packet types
– Poll messages

– Responses

• Layer 7: allocation of IDs among agencies



12

Layer 1: modulation and frequency

• Downlink from reader
– ~900 MHz carrier frequency

– Square-wave AM

• Unipolar ASK of the carrier using Manchester encoding

• “1”: signal during first half, “0”: signal during second

• Uplink from transponder
– Backscatter of carrier via antenna polarization

– Dual-frequency AM

• FSK of 1200 KHz/600 KHz (“1” and “0”, respectively)

• 300 Kbps data rate (both directions)



• Downlink from reader

• 300 Kbps data rate

• 600 KHz square wave (ASK)

– “1” = high in first half of period

– “0” = high in second half of period

13

Layer 1: reader modulation

1 1 0



• Uplink from transponder

• 300 Kbps data rate

• 1200/600 KHz square wave (FSK)

– “1” = higher frequency

– “0” = lower frequency

14

Layer 1: transponder modulation

1 1 0



15

Layer 2: packet framing

• Wakeup signal before message
– 33 µs burst of 1-bits

– 100 µs no signal

• Packet start: 0xAAC

• Ends with 16-bit CRC
– Standard says “CRC-CCITT”

– Spec bug: initial value is 0, not 0xFFFF like CCITT says

• If you actually implemented the Title 21 spec, you’d be 
incompatible



16

Layer 3: standard messages

Polling Message Type 1 (8000)

– Requests the transponder to 
send its ID

– Agency code, 16-bit

Data Message Type 1 (0001)

– Transponder ID, 32-bit

Acknowledge Message Type 2 (C000)

– Confirms reception of the 
transponder ID

– Transponder ID, 32-bit

– Reader ID, 32-bit

– Status, 16-bit

Reader Transponder



17

Enrollment process



18

Enrollment process

• Validation code is just toll tag serial number in hex

• Used as a checksum for typos



19

Diving into the transponder

“If a Toll Tag fails to operate for 
reasons other than abuse… we will 
replace it…”



20

Diving into the transponder

Battery

Antenna (XMIT)

Antenna (RCV)

TI MSP430

Buzzer

Demodulation
circuit



21

Transponder operation

• Receive side

• Signal is received and amplified (analog)

• Demodulated and presented to pin 2.5 as a square 
wave

• Transmit side

• Carrier reflected back by swapping pins 1.6 and 1.7 
quickly

• Buzzer

• Timer interrupt + XOR (pins 2.0 and 2.1)

Thanks go to Adam O’Donnell for the RF help



22

MSP430 basics

• Low-power 16-bit microcontroller
– 2, 4, and 6-byte instructions

• Kinda strange:  MOV @R14+, R15

– Von Neumann address space (shared code/data)

• Helpful for stack/integer overflows (Travis Goodspeed)

– Self-programmable flash memory

• Persist that exploit

• MSP430F1111A
– Peripherals: timer, comparator, ports (address 0)

– 128 bytes RAM (0x200)

– 256 bytes data flash (0x1000)

– 2 KB code flash (0xF800)



23

FasTrak MSP430 memory map

Data flash (1000 - 10FF)

Boot ROM (0C00 - 0FFF)

RAM (0200 - 027F)

Peripherals (0000 - 01FF)

Code flash (F800 - FFFF)

Interrupt vectors (FFE0 - FFFF)



24

Dumping the firmware

• Internal firmware is protected by JTAG fuse
– Normal programming method is via JTAG

• Bootstrap loader (BSL)
– 256-bit password allows access to flash

• Probably checked with memcmp()

• Go see Travis Goodspeed’s talk on timing attacks in the 
BSL

• Rule 1: always try the front door



25

Old transponders are not locked

• JTAG fuse is not set
– Plug in microcontroller and read flash memory

– Verified on a transponder from Southern California

• Newer transponders are locked
– Need more magic to verify their contents



26

Bypassing the JTAG fuse

• Silicon magic courtesy of Chris Tarnovsky
– Depackage chip

– [Fuse magic happens here]

– Rebond to DIP package

– Read out flash

• Code was identical to unlocked
transponder

If you make silicon, Fly Logic 
does amazing analysis work.

http://flylogic.net/



27

Monitoring transponder IO

• Add header and socket for DIP CPU



28

Monitoring transponder IO

• FPGA tap board and socket on breadboard



29

What’s inside?

• Load code with IDA MSP430 plugin
– Full reply messages with checksum laid out in order

– Main loop: switch (packetLen); dispatch handler

– Timer interrupts, comparator trigger

• Build a modified msp430simu
– Cycle-accurate simulator in python

– Breakpoint/log support routines

• Checksum

• Memcpy

• Receive (poll) for packet

• Transmit packet

• Beep



30

Reader request messages

• Standard
– Request for ID (8000, 8 bytes)

• Reserved by spec but not supported by firmware
– Encrypted ID request (80xx, 11 bytes)

• Agency code (16 bits)

• Proprietary TI encryption key (24 bits)

– Encrypted unknown message (88xx, 13 bytes)

• Transponder ID (32 bits)

• Proprietary TI encryption key (24 bits)

Lengths include “AAC” header, rounded up to nearest byte.



31

Reader request messages

• Supported by firmware but not specified
– 11-byte requests

• 00DE, 01DE, 02DE, 03DE, 0480, 04DE

– 36-byte requests

• 01DF, 05DF

– 37-byte requests

• 05DE



32

Transponder reply messages

• Standard
– ID response (0001, 10 bytes)

• Reserved and supported by firmware
– ID and serial response (0007, 22 bytes)

• “Block A data” (128 bits) which is actually:

– Unknown (16 bits)

– Transponder ID (32 bits)

– Unknown (16 bits)

– Transponder serial number (BCD, 48 bits) 

– Padding (08FF)

• Reserved by spec but unsupported
– “Block A and B, C, or D data” (000x, 38 bytes)



33

Transponder reply messages

• Supported by firmware but not specified
– Misc ID+serial messages

• 0002, 38 bytes

– 16 bytes empty

• 0005, 38 bytes

– Bits checked when processing other msgs

– Empty messages (for future?)

• 5F07, 30 bytes

• 0003, 38 bytes

• 0004, 38 bytes

• 5F06, 38 bytes



34

Reader response messages

• Standard
– Status reply (C000, 16 bytes)

• Transponder ID (32 bits)

• Reader ID (32 bits)

• Status code (16 bits)

• Reserved but not supported by firmware
– Unknown response 1 (C00x, 20 bytes)

– Unknown response 2 (C00x, 36 bytes)

• All the above + 128 bits “data”



What’s not inside?



CRYPTO.



37

Cloning attacks

• Passive cloning
– Set up a receiver near a freeway

– Record IDs as they are transmitted to reader

• Active cloning
– Drive past parking lots, shopping centers, etc.

– Use portable reader to scan and log IDs of parked cars

• Missing cryptographic property: replay resistance
– Reader proves itself to transponder

– Transponder proves itself to reader



38

Monetizing cloning attacks

• Create a subscription service
– Users get customized transponders or hack existing ones

– Device downloads new IDs from PC over the air

– Each ID is used only once, preventing pattern analysis

• Low risk
– Failure to read transponder = $29 fine

– Service can pay penalty for subscribers

• Potential customers
– Trucking companies

– Drug couriers



39

Digging still deeper…

• Does FasTrak write data to your transponder?
– “FasTrak is a read-only device. There's no memory to write 

anything to.” (John Goodwin, BATA)

– Best interpretation: “We only use it in a read-only manner and 
are not aware our vendor used a flash device”

• But there is memory and it is writeable
– MSP430F1111A is flash-based, only the BSL is in ROM

– Supports in-system erase/rewrite



40

Firmware has ID update routine

• Flash write subroutine is present in firmware

• Called from multiple places in packet processing 
function

• Appears to be used to update the IDs of various 
message responses stored at 0x1000

mov   #0A550h, &FCTL2

mov   #0A500h, &FCTL3

mov.b @R14+, 0(R12)



41

IDs can be wiped/overwritten from remote

• Flash update can be triggered with a couple 
messages
– Packet 1: prepare to flash

– Packet 2: data to write

• Update routine
– Calculates checksum of data from packet 

– Writes it to various locations of IDs within pre-computed 
response messages stored in flash

• Caveat: update routine only tested in simulator so 
far



42

Alibi attack

• Establish presence elsewhere during crime
– Read and save neighbor’s FasTrak ID from parked car

– Send message to update his transponder with your ID

– He goes to work at 9 am, you commit crime

– Subpoena records: you were on the bridge at 9 am!

• Questions
– Is FasTrak data really considered so indisputable?

– Will this alibi hold up in court?



43

Contacting the vendors

• FasTrak is:
– A technical standard ratified as law by the California 

legislature

– Administered by CalTrans

– Locally run by Metropolitan Transportation Commission 
(MTC), Bay Area Toll Authority (BATA), Orange County 
Transportation Corridor Agencies (TCA), etc.

– With devices potentially provided by multiple vendors, but in 
practice, mostly Sirit

• No response after …
– Email contact form on bayareafastrak.org

– Sending business card with reporter who later talked to BATA

– Speaking to CalTrans consultant



Conclusions

• Electronic toll collection needs improvement
– Excessive loss of privacy in current usage

• Please fix this before we move to license plate recognition

– Clonable if no encryption

– Untrustworthy for legal evidence

• Transponder IDs can be overwritten over-the-air

• Found many surprises when opening the box, 
even with an established system
– I’m happy to explain the details for free to any FasTrak 

authorities who contact me

Contact: nate@rootlabs.com Info/blog: rootlabs.com


