ACPIl and FreeBSD

Nate Lawson

nate@root.org

Bay Area FreeBSD Users’ Group

May 3, 2006

Overview

Introduction

— PC platform and architecture
— ACPI

FreeBSD ACPI support
Challenges and issues
How you can help

How | got here

Background in security and cryptography

Worked on storage security in my day job
— Built a Fibre Channel encryptor
— Built a parallel SCSI encryptor

— Tired of starting anew each time, wrote and committed a SCSI
target driver framework

But my laptop wasn’t working so well

Began working on ACPI in my spare time
— 4 years later, here | am

PC platform (classic)

Floppy

Serial

_/

AGP ,
Video
\ Ether | USB
CPU
Northbridge Southbridge
(MCH) (ICH)
CPU
PClI | ATA
RAM
FSB
Proprietary
(Hypertransport,

V-link, etc.)

Super 1/0

\

EC

LPC

PC platform (AMD/PCI Express)

Floppy

Serial

_/

PCle ,
Video
\ Ether | USB
CPU
Northbridge Southbridge
(MCH) (ICH)
CPU
‘\ PCI | ATA
GigE
RAM PCle or

CSA

Super 1/0

\

EC

Legacy boot process

 CPU RESET pin triggered, jumps to boot vector
— Real mode, low memory, etc., just like old DOS days

« BIOS decompressed from flash, executed
— Self-tests
— Code copied into SMRAM and SMM enabled
— Initializes built-in devices and cards in slots
— Devices set to initial power states
— Finds other CPUs
— Sets up RAM tables for OS (e.g., MPtable)

« Loads boot sector and jumps to it

Power management

Enumerate devices, including hotplug events
— Location

— Resources

— State (on/off/missing)

Suspend system

— RAM

— Disk

— Power-off

Power down/up devices based on system activity
- CPU

— Internal chipset devices

— External devices on a bus
Thermal management

— Fans

— Passive cooling

Legacy power management (APM)

BIOS handles all PM, began with the 386SL

System management interrupt (SMI) is regularly triggered by device
activity
BIOS code running from SMM performs power activity

Powers down idle devices
Implements suspend/resume
Controls device state

Problems

No OS visibility of what BIOS is doing (“but | don’t want it powered down
now”)

Duplicated effort in maintaining large, platform-specific codebase
Buggy, especially 32-bit entry points
PC-centric (i386 only)

ACPI

« OS and BIOS now share power management

— OS: policy, drivers, and a few hooks

— BIOS: delivers the SMI (now SCI) to the OS and provides tables that
describe what the OS can do

« History
— Appeared in 1998, not really implemented until 1999

— Microsoft implementation significantly different from the standard before
Windows XP (2001)

— Spec is updated after major platforms ship with the new features
« Problems

— Platform-specific ACPI devices (acpi_ibm, acpi_toshiba, ...) create
duplicated effort

— Buggy, especially BIOS interface
— PC-centric (i386, amd64, ia64)

ACPI operation

« BIOS creates tables on boot
— Table of contents (RSDT/XSDT), pointed to by RSDP
— DSDT: AML bytecode and device tree
— MADT: APIC table for SMP and interrupt routing
— FADT: fixed features, superceded by DSDT in many cases

« OS finds tables in memory and activates ACPI

— Writes special value to SMM code which enables ACPI mode
and the SCI in particular

— SCI and SMI are shared, BIOS handles SMI transparently

« OS enumerates devices and config
— Walks device tree from DSDT
— Powers up any device the BIOS left off
— Allocates resources and attaches drivers

AML operation

« DSDT consists of bytecode

« Bytecode describes regions (IO ports, memory-mapped devices),
objects (containers), methods, and opcodes

« Example:

OperationRegion (\SCPP, SystemIO, 0xB2, 0x01)
Field (\SCPP, ByteAcc, NoLock, Preserve)
{
SMIP, 8
}

Method (_SB.PCIO._INI, 0, NotSerialized)
{
If (STRC (_OS, "Microsoft Windows")) {
Store (0x56, SMIP)

« OS AML interpreter runs the requested method by interpreting the
code and reading/writing to memory as it directs

ACPI operation (suspend)

User presses “sleep” button

Super I/O gets interrupt on GPIO pin

EC function raises the SMI/SCI interrupt

OS EC driver queries EC for event type (sleep pressed)
OS delivers Notify event to the button driver

Button driver calls OS-specific GoToSleep function

OS walks device tree, saving state

OS executes AML bytecode for requested sleep
operation (say, \ S3)

Sequence of O writes causes chipset to enter S3 (STR)

ACPI operation (resume)

User presses “wake” button
Super 1/O gets interrupt on GPIO pin

EC raises the SMI/SCI interrupt and signals chipset to
wake

BIOS resumes any devices it manages and jumps to OS
wake vector

OS walks device tree, restoring state
OS executes AML bytecode for resume (_WAK)
OS continues execution of processes

ACPI operation (probe

* Device tree example:

Device (PCIO) Internal PCI Device (PWRB) ACPI power button
Device (USBO) USB ports Device (FAN) ACPI fan
Device (USB1) Device (PCIO)
Device (USBE) Device (LNKA) PCI irqg link
Device (ICHX) ATA on-board Device (LNKB)
Device (PRIM) ce
Device (MAST) Device (PX40) Super I/O
Device (SLAV) Device (SYSR) IO port resources
Device (SECN) Device (PIC) Legacy irqg control
Device (MAST) Device (RTC) Real-time clock
Device (SLAV) Device (SPKR) BIOS speaker
Device (IDE1) ATA (dock) Device (COPR) FPU
Device (PRIM) Device (FDCO) Floppy
Device (DRVO) Device (UAR1) Serial 1
Device (DRV1) Device (UAR2) Serial 2
Device (SECD) Device (IRDA) Infrared (serial)
Device (DRVO0) Device (LPT1) Parallel
Device (DRV1) Device (ECP1) Parallel (ECP access)
Device (PS2M) PS/2 mouse
Device (PS2K) PS/2 keyboard
Continued - Device (PSMR)
Device (PMIO)

FreeBSD history

1999
— First implemented by dfr@
2000 - 2001
— Moved to Intel ACPI-CA interpreter

— Battery, suspend/resume, and core driver brought in (msmith@, iwasaki@,
takawata@)

2002 - 2003
— New imports, EC updates, _PxD device power states
— | stepped too close to the sucking vortex
2004
— rman support
2005
— cpufreq framework implemented
— CPU-specific drivers for SpeedStep (new, ICH), Powernow, P4TCC, throttling
2006
— acpi_dock (iwasaki@ returns!)

To be continued...

