
ACPI and FreeBSD

Nate Lawson
nate@root.org

Bay Area FreeBSD Users’ Group
May 3, 2006

Overview

• Introduction
– PC platform and architecture
– ACPI

• FreeBSD ACPI support
• Challenges and issues
• How you can help

How I got here

• Background in security and cryptography
• Worked on storage security in my day job

– Built a Fibre Channel encryptor
– Built a parallel SCSI encryptor
– Tired of starting anew each time, wrote and committed a SCSI

target driver framework

• But my laptop wasn’t working so well
• Began working on ACPI in my spare time

– 4 years later, here I am

PC platform (classic)

CPU

CPU

Northbridge
(MCH)

RAM

Southbridge
(ICH)

Video

Ether USB

PCI ATA

Super I/O

FSB
Proprietary
(Hypertransport,
V-link, etc.)

AGP

LPC

Floppy Serial

EC

PC platform (AMD/PCI Express)

CPU

CPU

Northbridge
(MCH)

RAM

Southbridge
(ICH)

Video

Ether USB

PCI ATA

Super I/O

PCIe
Floppy Serial

EC
GigE

PCIe or
CSA

Legacy boot process

• CPU RESET pin triggered, jumps to boot vector
– Real mode, low memory, etc., just like old DOS days

• BIOS decompressed from flash, executed
– Self-tests
– Code copied into SMRAM and SMM enabled
– Initializes built-in devices and cards in slots
– Devices set to initial power states
– Finds other CPUs
– Sets up RAM tables for OS (e.g., MPtable)

• Loads boot sector and jumps to it

Power management

• Enumerate devices, including hotplug events
– Location
– Resources
– State (on/off/missing)

• Suspend system
– RAM
– Disk
– Power-off

• Power down/up devices based on system activity
– CPU
– Internal chipset devices
– External devices on a bus

• Thermal management
– Fans
– Passive cooling

Legacy power management (APM)

• BIOS handles all PM, began with the 386SL
• System management interrupt (SMI) is regularly triggered by device

activity
• BIOS code running from SMM performs power activity

– Powers down idle devices
– Implements suspend/resume
– Controls device state

• Problems
– No OS visibility of what BIOS is doing (“but I don’t want it powered down

now”)
– Duplicated effort in maintaining large, platform-specific codebase
– Buggy, especially 32-bit entry points
– PC-centric (i386 only)

ACPI

• OS and BIOS now share power management
– OS: policy, drivers, and a few hooks
– BIOS: delivers the SMI (now SCI) to the OS and provides tables that

describe what the OS can do
• History

– Appeared in 1998, not really implemented until 1999
– Microsoft implementation significantly different from the standard before

Windows XP (2001)
– Spec is updated after major platforms ship with the new features

• Problems
– Platform-specific ACPI devices (acpi_ibm, acpi_toshiba, …) create

duplicated effort
– Buggy, especially BIOS interface
– PC-centric (i386, amd64, ia64)

ACPI operation

• BIOS creates tables on boot
– Table of contents (RSDT/XSDT), pointed to by RSDP
– DSDT: AML bytecode and device tree
– MADT: APIC table for SMP and interrupt routing
– FADT: fixed features, superceded by DSDT in many cases

• OS finds tables in memory and activates ACPI
– Writes special value to SMM code which enables ACPI mode

and the SCI in particular
– SCI and SMI are shared, BIOS handles SMI transparently

• OS enumerates devices and config
– Walks device tree from DSDT
– Powers up any device the BIOS left off
– Allocates resources and attaches drivers

AML operation

• DSDT consists of bytecode
• Bytecode describes regions (IO ports, memory-mapped devices),

objects (containers), methods, and opcodes
• Example:

• OS AML interpreter runs the requested method by interpreting the
code and reading/writing to memory as it directs

OperationRegion (\SCPP, SystemIO, 0xB2, 0x01)
Field (\SCPP, ByteAcc, NoLock, Preserve)
{

SMIP, 8
}

Method (_SB.PCI0._INI, 0, NotSerialized)
{

If (STRC (_OS, "Microsoft Windows")) {
Store (0x56, SMIP)

}

ACPI operation (suspend)

• User presses “sleep” button
• Super I/O gets interrupt on GPIO pin
• EC function raises the SMI/SCI interrupt
• OS EC driver queries EC for event type (sleep pressed)
• OS delivers Notify event to the button driver
• Button driver calls OS-specific GoToSleep function
• OS walks device tree, saving state
• OS executes AML bytecode for requested sleep

operation (say, _S3)
• Sequence of IO writes causes chipset to enter S3 (STR)

ACPI operation (resume)

• User presses “wake” button
• Super I/O gets interrupt on GPIO pin
• EC raises the SMI/SCI interrupt and signals chipset to

wake
• BIOS resumes any devices it manages and jumps to OS

wake vector
• OS walks device tree, restoring state
• OS executes AML bytecode for resume (_WAK)
• OS continues execution of processes

ACPI operation (probe)

• Device tree example:

Device (PCI0) Internal PCI
Device (USB0) USB ports
Device (USB1)
Device (USBE)
Device (ICHX) ATA on-board

Device (PRIM)
Device (MAST)
Device (SLAV)

Device (SECN)
Device (MAST)
Device (SLAV)

Device (IDE1) ATA (dock)
Device (PRIM)

Device (DRV0)
Device (DRV1)

Device (SECD)
Device (DRV0)
Device (DRV1)

Continued �

Device (PWRB) ACPI power button
Device (FAN) ACPI fan
Device (PCI0)

Device (LNKA) PCI irq link
Device (LNKB)
...
Device (PX40) Super I/O

Device (SYSR) IO port resources
Device (PIC) Legacy irq control
Device (RTC) Real-time clock
Device (SPKR) BIOS speaker
Device (COPR) FPU
Device (FDC0) Floppy
Device (UAR1) Serial 1
Device (UAR2) Serial 2
Device (IRDA) Infrared (serial)
Device (LPT1) Parallel
Device (ECP1) Parallel (ECP access)
Device (PS2M) PS/2 mouse
Device (PS2K) PS/2 keyboard
Device (PSMR)
Device (PMIO)

FreeBSD history

• 1999
– First implemented by dfr@

• 2000 - 2001
– Moved to Intel ACPI-CA interpreter
– Battery, suspend/resume, and core driver brought in (msmith@, iwasaki@,

takawata@)
• 2002 - 2003

– New imports, EC updates, _PxD device power states
– I stepped too close to the sucking vortex

• 2004
– rman support

• 2005
– cpufreq framework implemented
– CPU-specific drivers for SpeedStep (new, ICH), Powernow, P4TCC, throttling

• 2006
– acpi_dock (iwasaki@ returns!)

To be continued…

